Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 984789, 2022.
Article in English | MEDLINE | ID: covidwho-2198860

ABSTRACT

Objectives: Several COVID-19 vaccines list "uncontrolled epilepsy" as a contraindication for vaccination. This consequently restricts vaccination against COVID-19 in patients with epilepsy (PWE). However, there is no strong evidence that COVID-19 vaccination can exacerbate conditions in PWE. This study aims to determine the impact of COVID-19 vaccination on PWE. Methods: PWE were prospectively recruited from 25 epilepsy centers. We recorded the seizure frequency at three time periods (one month before the first vaccination and one month after the first and second vaccinations). A generalized linear mixed-effects model (GLMM) was used for analysis, and the adjusted incidence rate ratio (AIRR) with 95% CI was presented and interpreted accordingly. Results: Overall, 859 PWE were included in the analysis. Thirty-one (3.6%) and 35 (4.1%) patients were found to have increased seizure frequency after the two doses, respectively. Age had an interaction with time. The seizure frequency in adults decreased by 81% after the first dose (AIRR=0.19, 95% CI:0.11-0.34) and 85% after the second dose (AIRR=0.16, 95% CI:0.08-0.30). In juveniles (<18), it was 25% (AIRR=0.75, 95% CI:0.42-1.34) and 51% (AIRR=0.49, 95% CI:0.25-0.95), respectively. Interval between the last seizure before vaccination and the first dose of vaccination (ILSFV) had a significant effect on seizure frequency after vaccination. Seizure frequency in PWE with hereditary epilepsy after vaccination was significantly higher than that in PWE with unknown etiology (AIRR=1.95, 95% CI: 1.17-3.24). Two hundred and seventeen (25.3%) patients experienced non-epileptic but not serious adverse reactions. Discussion: The inactivated COVID-19 vaccine does not significantly increase seizure frequency in PWE. The limitations of vaccination in PWE should focus on aspects other than control status. Juvenile PWE should be of greater concern after vaccination because they have lower safety. Finally, PWE should not reduce the dosage of anti-seizure medication during the peri-vaccination period.


Subject(s)
COVID-19 , Epilepsy , Adult , Humans , COVID-19 Vaccines/adverse effects , Prospective Studies , COVID-19/prevention & control , COVID-19/complications , Epilepsy/drug therapy , Vaccination/adverse effects
2.
Med (N Y) ; 3(8): 568-578.e3, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1882366

ABSTRACT

BACKGROUND: Emerging evidence suggests heterologous prime-boost COVID-19 vaccination as a superior strategy than homologous schedules. Animal experiments and clinical observations have shown enhanced antibody response against influenza variants after heterologous vaccination; however, whether the inoculation order of COVID-19 vaccines in a prime-boost schedule affects antibody response against SARS-CoV-2 variants is not clear. METHODS: We conducted immunological analyses in a cohort of health care workers (n = 486) recently vaccinated by three types of inactivated COVID-19 vaccines under homologous or heterologous prime-boost schedules. Antibody response against ancestral SARS-CoV-2 (Wuhan-Hu-1) was assessed by total antibody measurements, surrogate virus neutralization tests, and pseudovirus neutralization assays (PNA). Furthermore, serum neutralization activity against SARS-CoV-2 variants of concern was also measured by PNA. FINDINGS: We observed strongest serum neutralization activity against the widely circulating SARS-CoV-2 variant B.1.617.2 among recipients of heterologous BBIBP-CorV/CoronaVac and WIBP-CorV/CoronaVac. In contrast, recipients of CoronaVac/BBIBP-CorV and CoronaVac/WIBP-CorV showed significantly lower B.1.617.2 neutralization titers than recipients of reverse schedules. Laboratory tests revealed that neutralizing activity against common variants but not the ancestral SARS-CoV-2 was associated with the inoculation order of heterologous prime-boost vaccines. Multivariable regression analyses confirmed this association after adjusting for known confounders. CONCLUSIONS: Our data provide clinical evidence of inoculation order-dependent expansion of neutralizing breadth against SARS-CoV-2 in recipients of heterologous prime-boost vaccination and call for further studies into its underlying mechanism. FUNDING: National Key R&D Program of China, National Development and Re-form Commission of China, National Natural Science Foundation of China, Shenzhen Science and Technology Innovation Commission, and US Department of Veterans Affairs.


Subject(s)
COVID-19 , Influenza Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , United States , Vaccination
3.
Int J Biol Sci ; 18(5): 1844-1851, 2022.
Article in English | MEDLINE | ID: covidwho-1753905

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. With the continuous evolution of the viral genome, SARS-CoV-2 has evolved many variants. B.1.617.2, also called Delta, is one of the most concerned variants. The Delta variant was first reported in India at the end of 2020 but has spread globally, by now, to 135 countries and is not stand still. Delta shared some mutations with other variants, and owned its special mutations on spike proteins, which may be responsible for its strong transmission and increasing virulence. Under these circumstances, a systematic summary of Delta is necessary. This review will focus on the Delta variant. We will describe all the characteristics of Delta (including biological features and clinical characteristics), analyze potential reasons for its strong transmission, and provide potential protective ways for combating Delta.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral/genetics , Humans , Pandemics , SARS-CoV-2/genetics
4.
EPMA J ; 12(3): 307-324, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1544595

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. Drug therapy is one of the major treatments, but contradictory results of clinical trials have been reported among different individuals. Furthermore, comprehensive analysis of personalized pharmacotherapy is still lacking. In this study, analyses were performed on 47 well-characterized COVID-19 drugs used in the personalized treatment of COVID-19. METHODS: Clinical trials with published results of drugs use for COVID-19 treatment were collected to evaluate drug efficacy. Drug-to-Drug Interactions (DDIs) were summarized and classified. Functional variations in actionable pharmacogenes were collected and systematically analysed. "Gene Score" and "Drug Score" were defined and calculated to systematically analyse ethnicity-based genetic differences, which are important for the safer use of COVID-19 drugs. RESULTS: Our results indicated that four antiviral agents (ritonavir, darunavir, daclatasvir and sofosbuvir) and three immune regulators (budesonide, colchicine and prednisone) as well as heparin and enalapril could generate the highest number of DDIs with common concomitantly utilized drugs. Eight drugs (ritonavir, daclatasvir, sofosbuvir, ribavirin, interferon alpha-2b, chloroquine, hydroxychloroquine (HCQ) and ceftriaxone had actionable pharmacogenomics (PGx) biomarkers among all ethnic groups. Fourteen drugs (ritonavir, daclatasvir, prednisone, dexamethasone, ribavirin, HCQ, ceftriaxone, zinc, interferon beta-1a, remdesivir, levofloxacin, lopinavir, human immunoglobulin G and losartan) showed significantly different pharmacogenomic characteristics in relation to the ethnic origin of the patient. CONCLUSION: We recommend that particularly for patients with comorbidities to avoid serious DDIs, the predictive, preventive, and personalized medicine (PPPM, 3 PM) strategies have to be applied for COVID-19 treatment, and genetic tests should be performed for drugs with actionable pharmacogenes, especially in some ethnic groups with a higher frequency of functional variations, as our analysis showed. We also suggest that drugs associated with higher ethnic genetic differences should be given priority in future pharmacogenetic studies for COVID-19 management. To facilitate translation of our results into clinical practice, an approach conform with PPPM/3 PM principles was suggested. In summary, the proposed PPPM/3 PM attitude should be obligatory considered for the overall COVID-19 management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00247-0.

5.
Signal Transduct Target Ther ; 6(1): 368, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467093

ABSTRACT

The long-term immunity and functional recovery after SARS-CoV-2 infection have implications in preventive measures and patient quality of life. Here we analyzed a prospective cohort of 121 recovered COVID-19 patients from Xiangyang, China at 1-year after diagnosis. Among them, chemiluminescence immunoassay-based screening showed 99% (95% CI, 98-100%) seroprevalence 10-12 months after infection, comparing to 0.8% (95% CI, 0.7-0.9%) in the general population. Total anti-receptor-binding domain (RBD) antibodies remained stable since discharge, while anti-RBD IgG and neutralization levels decreased over time. A predictive model estimates 17% (95% CI, 11-24%) and 87% (95% CI, 80-92%) participants were still 50% protected against detectable and severe re-infection of WT SARS-CoV-2, respectively, while neutralization levels against B.1.1.7 and B.1.351 variants were significantly reduced. All non-severe patients showed normal chest CT and 21% reported COVID-19-related symptoms. In contrast, 53% severe patients had abnormal chest CT, decreased pulmonary function or cardiac involvement and 79% were still symptomatic. Our findings suggest long-lasting immune protection after SARS-CoV-2 infection, while also highlight the risk of immune evasive variants and long-term consequences for COVID-19 survivors.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunologic Memory , Models, Immunological , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/diagnostic imaging , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Tomography, X-Ray Computed
6.
Int J Biol Sci ; 17(8): 2080-2088, 2021.
Article in English | MEDLINE | ID: covidwho-1271049

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a persistent global threat. The transmission of SARS-CoV-2 is wide and swift. Rapid detection of the viral RNA and effective therapy are imperative to prevent the worldwide spread of the new infectious disease. Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR)- CRISPR-associated protein (Cas) system is an RNA-directed adaptive immune system, and it has been transformed into a gene editing tool. Applications of CRISPR-Cas system involves in many fields, such as human gene therapy, drug discovery and disease diagnosis. Under the background of COVID-19 pandemic, CRISPR-Cas system shows hidden capacity to fight the emergency in many aspects. This review will focus on the role of gene editing in COVID-19 diagnosis and treatment. We will describe the potential use of CRISPR-Cas-based system in combating COVID-19, from diagnosis to treatment. Furthermore, the limitation and perspectives of this novel technology are also evaluated.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/therapy , CRISPR-Cas Systems , Gene Editing/methods , Gene Expression Regulation, Viral/genetics , RNA, Viral/analysis , SARS-CoV-2/genetics , Animals , Fluorometry/methods , Forecasting , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Mice , Mice, Transgenic , Models, Animal , Molecular Targeted Therapy , Nasopharynx/virology , Oropharynx/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
7.
Thorac Cancer ; 12(1): 57-65, 2021 01.
Article in English | MEDLINE | ID: covidwho-900878

ABSTRACT

BACKGROUND: Data on clinical, laboratory, and radiographic characteristics and risk factors for in-hospital mortality of lung cancer patients with COVID-19 are scarce. Here, we aimed to characterize the early clinical features of lung cancer patients with COVID-19 and identify risk factors associated with in-hospital mortality. METHODS: All consecutive lung cancer patients with laboratory-confirmed COVID-19 admitted to 12 hospitals in Hubei province, China, from 3 January to 6 May 2020 were included in the study. Patients without definite clinical outcomes during the period were excluded. Data on initial clinical, laboratory and radiographic findings were compared between survivors and nonsurvivors. Univariable and multivariable logistic regression analyses were used to explore the risk factors associated with in-hospital mortality. RESULTS: Of the 45 lung cancer patients (median [interquartile range] age, 66 [58-74] years; 68.9% males) included, 34 (75.6%) discharged and 11 (24.4%) died. Fever (73.3%) and cough (53.3%) were the dominant initial symptoms, and respiratory symptoms were common. Lung cancer patients also presented atypical appearances of COVID-19. In the multivariable analysis, prolonged prolongation prothrombin time (PT) (OR = 2.1, 95% CI: 1.00-4.41, P = 0.0497) and elevated high sensitivity cardiac troponin I (hs-TNI) (OR = 7.65, 95% CI: 1.24-47.39, P = 0.0287) were associated with an increased risk of in-hospital mortality. CONCLUSIONS: Lung cancer patients with COVID-19 have high in-hospital mortality. Prolonged PT and elevated hs-TNI are independent risk factors for in-hospital mortality of lung cancer patients with COVID-19. KEY POINTS: SIGNIFICANT FINDINGS OF THE STUDY: Lung cancer patients with COVID-19 have atypical early symptoms and imaging features. The prolonged prothrombin time and elevated high sensitivity cardiac troponin I are independent risk factors for in-hospital mortality of lung cancer patients with COVID-19. WHAT THIS STUDY ADDS: This study characterizes the early clinical features of lung cancer patients with COVID-19 in China, and identifies the risk factors associated with in-hospital mortality of lung cancer patients with COVID-19.


Subject(s)
COVID-19/therapy , Hospital Mortality/trends , Lung Neoplasms/mortality , SARS-CoV-2/isolation & purification , Aged , COVID-19/complications , COVID-19/ethnology , China , Female , Hospital Mortality/ethnology , Hospitalization/statistics & numerical data , Humans , Lung Neoplasms/complications , Lung Neoplasms/ethnology , Male , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Retrospective Studies , Risk Factors , SARS-CoV-2/physiology , Survival Rate
9.
Cell Host Microbe ; 28(3): 455-464.e2, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-654072

ABSTRACT

Interferons (IFNs) are widely used in treating coronavirus disease 2019 (COVID-19) patients. However, a recent report of ACE2, the host factor mediating SARS-Cov-2 infection, identifying it as interferon-stimulated raised considerable safety concern. To examine the association between the use and timing of IFN-α2b and clinical outcomes, we analyzed in a retrospective multicenter cohort study of 446 COVID-19 patients in Hubei, China. Regression models estimated that early administration (≤5 days after admission) of IFN-α2b was associated with reduced in-hospital mortality in comparison with no admission of IFN-α2b, whereas late administration of IFN-α2b was associated with increased mortality. Among survivors, early IFN-α2b was not associated with hospital discharge or computed tomography (CT) scan improvement, whereas late IFN-α2b was associated with delayed recovery. Additionally, early IFN-α2b and umifenovir alone or together were associated with reduced mortality and accelerated recovery in comparison with treatment with lopinavir/ritonavir (LPV/r) alone. We concluded that administration of IFN-α2b during the early stage of COVID-19 could induce favorable clinical responses.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Interferon-alpha/therapeutic use , Pneumonia, Viral/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , COVID-19 , Child , China/epidemiology , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Drug Therapy, Combination , Female , Hospital Mortality , Host Microbial Interactions/drug effects , Humans , Indoles/administration & dosage , Interferon alpha-2 , Interferon-alpha/administration & dosage , Length of Stay , Lopinavir/administration & dosage , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Retrospective Studies , Ritonavir/administration & dosage , SARS-CoV-2 , Treatment Outcome , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL